# **PROTOCOL** # **AFA-Liposome™ Formation: Phospholipon 90G M220 130μL** #### **Summary of Operating Conditions** Table 1. Summary of Operating Conditions | AFA Instrument | M220 | |---------------------|--------------------| | Peak Incident Power | 40 W | | Duty Factor | 50% | | Cycles per Burst | 1000 | | Duration | 600 seconds | | Bath Temperature | 20°C | | Power Mode | frequency sweeping | | Degassing Mode | N/A | | Volume | 130μL | Recommended settings are subject to change without notice. See <a href="http://covarisinc.com/resources/protocols/">http://covarisinc.com/resources/protocols/</a> for updates to this document. # **Supplies** Table 2. Equipment List | Item | Description | Part Number | |------------------------|----------------------------|-------------| | Sample Vessel | microTUBE Screw Cap 6x16mm | 520146 | | Sample Holder | Holder for 520146 | 500358 | | Focused-ultrasonicator | M220 | 500295 | | Sample | Phospholipon 90G | Lipoid | | Buffer | 0.1 M PBS | Sigma | # **Operating Conditions** - 1. Turn on the M220 instrument and the computer, double click the SonoLab icon, fill the wash bottle with distilled or deionized water, and insert the *tube holder*. - 2. Fill the water bath, place the sample tube in the holder. Place in the instrument. - Load the Sliding Weight on the top of the tube and close the safety cover; Create/Load a method then click "Run" to start a process; Click "Pause" to pause the process, or click "Stop" to terminate the process; Part Number: 010237 Revision A Page **1** of **4** 4. Remove *Tube Holder Insert* and drain the water; Wipe the surface of the water bath with lint-free swab; Air dry for next use or shut down before idling for long period of time. #### Recommendations Specific for AFA-Liposome™ Formation The Covaris AFA process is highly reproducible; however steps should be taken to ensure the best results. The bath water is employed to couple acoustic energy to the sample vessel, thus attention must be paid to the following water treatment attributes to obtain the best results: - 1. *Purity*: When applying acoustics in rate-limited applications, foreign materials such as algae and particulates may scatter the high frequency focused acoustic beam. Bath water should be pure distilled or DI water, changed daily or cleansed by a Covaris Water Conditioning System. - 2. *Temperature*: Warmer temperatures promote less forceful collapse of acoustic cavities within the sample fluid. Bath temperature (as reported by SonoLAB software) should therefore be closely controlled and matched run-to-run and day-to-day. Employ the temperature alert feature in SonoLAB to warn of a failure to maintain control of bath temperature. - 3. *Level*: Attention should be paid to maintaining a consistent water level, according to published protocols. If using a Covaris Water Conditioning System, check levels daily to restore water lost to evaporation. - 4. Trapped air pockets: Air trapped in the vessel provides a reflective surface for the acoustical energy. When processing begins, any air pockets disperse as a multitude of small bubbles. These bubbles deflect and scatter the acoustic waveforms, effectively defocusing the energy and reducing overall effectiveness. For maximum performance, it is imperative that vessels be loaded full with aqueous sample, and air pockets minimized. In summary, when employing the Covaris AFA, control and verification of treatment attributes and water quality will reduce variance and promote consistent, satisfactory results. #### Method - 1. Set up the Covaris M220 at the appropriate temperature following the operating conditions above. - 2. Weigh out 2.6 mg of Phospholipon90G and add the sample to the sample vessel. - 3. Fill the tube with buffer (approximately 130 $\mu$ L), and cap the tube. Be careful not to introduce a bubble into the bottom of the tube. This may happen if the water is added too quickly. - CAUTION: The bottom of the tube is in the acoustic field. Therefore, a bubble in the sample will deflect energy and induce variable results. - 4. Carefully load the sample vessel into the appropriate holder, and place in instrument. - 5. Initiate and Run process according to the operating conditions specified in Table 1. Part Number: 010237 Revision A Page **2** of **4** # **Supplementary Data** # **Description** A Malvern Zetasizer Nano ZS-90 may be used to analyze the AFA-Liposomes<sup>™</sup> formed using the Covaris M220. The sample prepared above will be utilized for analysis. ### **Supplies** Table 3. Supplementary Equipment List | Item | Part Number | |------------------------------|-------------| | Malvern Zetasizer Nano ZS-90 | ZEN3690 | | Sample Cuvettes | DTS0012 | #### Method - 1. Set up the Malvern Zetasizer according to its setup instructions. - 2. Add 1 mL of deionized water to the cuvette. - 3. Aliquot $130\mu$ L of prepared sample into cuvette. The prepared sample is the sample prepared on the previous page after it has been treated with AFA. Cap the cuvette. - 4. Shake the cuvette by hand until the sample is dispersed evenly in the cuvette without air bubbles. - 5. Place in Zetasizer instrument and run Volume Distribution Analysis. # **Typical Output Readings: Volume** Figure 1. Size Distribution by Volume Part Number: 010237 Revision A # **Typical Output Readings: Variation** Table 4. Variation in Results | Process | Z-average (d.nm) | PdI | |---------|------------------|--------| | 1 | 27.3 | 0.130 | | 2 | 25.7 | 0.080 | | 3 | 25.7 | 0.086 | | 4 | 26.3 | 0.086 | | 5 | 26.4 | 0.117 | | Average | 26.3 | 0.099 | | SD | 0.56 | 0.0199 | | CV | 2% | 20% | Figure 2. Variation in AFA-Liposome™ Formation Results Part Number: 010237 Revision A